nmtvis Documentation
Release latest

Aug 25, 2021

Contents

Installation
Requirements
Features
Links

License
Support

Attention Visualization

7.1 Visualization VIEWS L e e e e e e e e e e e e e e
7.2 nmtvis.AttentionVisualizer.visualize_attention(data:List[dict])
7.3 nmtvis.AttentionVisualizer.visualize_transformer_attention(**kwargs)

Embedding Visualization
8.1 nmtvis.EmbeddingVisualizer.visualize_embedding_pca(**kwargs)
8.2 nmtvis.EmbeddingVisualizer.visualize_embedding_tsne(**kwargs)

Beam Search Decoding Visualization
9.1 nmtvis.BeamSearchVisualizer.visualize_visualize_beam_search_decode(**kwargs)

11

13

15
15
17
17

19
19
20

21

nmtvis Documentation, Release latest

nmtvis is a visualization toolkit for NMT(Neural Machine Translation) model.

It aims at helping researchers better understand how their model works so that they can further adjust or improve the
model.

Contents 1

nmtvis Documentation, Release latest

2 Contents

CHAPTER 1

Installation

Use pip to install nmtvis:

pip install nmtvis

nmtvis Documentation, Release latest

4 Chapter 1. Installation

CHAPTER 2

Requirements

e Python3
e Numpy

e Sklearn

nmtvis Documentation, Release latest

6 Chapter 2. Requirements

CHAPTER 3

Features

* Visualize attention weights in attention-based NMT models.
* Visualize high-dimensional word embeddings in 3D or 2D ways.

* Visualize beam search decoding process.

nmtvis Documentation, Release latest

8 Chapter 3. Features

CHAPTER 4

Links

* Source Code: https://github.com/player-eric/NMT-Visualizer
e Documentation: https:/nmtvis.readthedocs.io/en/latest

* For example code and data, please refer to: https://github.com/player-eric/NMT- Visualizer/tree/master/example

https://github.com/player-eric/NMT-Visualizer
https://nmtvis.readthedocs.io/en/latest
https://github.com/player-eric/NMT-Visualizer/tree/master/example

nmtvis Documentation, Release latest

10 Chapter 4. Links

CHAPTER B

License

The project is licensed under the MIT license.

11

nmtvis Documentation, Release latest

12 Chapter 5. License

CHAPTER O

Support

If you are having issues, please let me know. Contact me at digimonyan @gmail.com

13

mailto:digimonyan@gmail.com

nmtvis Documentation, Release latest

14 Chapter 6. Support

CHAPTER /

Attention Visualization

Module nmtvis.AttentionVisualizer provides two methods to visualize the attention weights in attention-based NMT
models.

One method, visualize_attention(), aims at visualizing attention between target sentence and source sentence in
translation. And the other method visualize_transformer_attention() is targeted at visualizing attention weights in
Transformer-based models.

By processing the attention weights into specified format and calling the corresponding method, a temporary web
server rendering the visualization result will be lauched.

See this demo with example data: https://player-eric.github.io/attention_demo/

Detailed introduction to this module and its potentioal usage can be view at: https://player-eric.github.i0/2020/02/20/
nmtvis-attention/

7.1 Visualization Views

Optionally, the attention weights can be visualized in three views: Alignment graph view, Heatmap view, and
Highlighted-words view.

In the alignment view, the source sentence and target sentence are displayed parallelly. Pairs of
words from the sentences are connected by lines, with stroke width proportional to the corresponding
attention weight.

Fig. 1: Alignment View
In the heatmap view, attention weights are ploted as a partitioned matrix. Blocks within the matrix
are of different color, indicating the extent of attention.

In the highlighted-words view, a word is selected when the mouse pointer hovers over it. Then all
the words(including the selected one) are highlighted according to the attention strength.

15

https://player-eric.github.io/attention_demo/
https://player-eric.github.io/2020/02/20/nmtvis-attention/
https://player-eric.github.io/2020/02/20/nmtvis-attention/

nmtvis Documentation, Release latest

@ Transformer Visualization X

0 @ localhost:8889

1

Layer| 5 § Type | target_to_source %

Source Sentence

HRDEDR R EE,,

Attention Heatmap

<EOS>

HRDEAR-

\ y]
WHO issued warning

Head | 0 v

Threshold=(0%)*max_attention (Assume attention below threshold as 0)

O

Distribution of Attention

Fig. 2: Heatmap View

Fig. 3: Heatmap View

16

Chapter 7. Attention Visualization

nmtvis Documentation, Release latest

7.2 nmtvis.AttentionVisualizer.visualize attention(data:List[dict])

Parameter Detail

data Parameter ‘data’ is a list of dictionaries.

The length of this list corresponds to number of sentence pairs.

Each dictionary should contain the following keys and value:
* key ‘source_sentence’: source sentence consist of M tokens
» key ‘target_sentence’: target sentence consist of N tokens
 key ‘attention_matrix’: attention matrix of shape (N,M)

7.3 nmtvis.AttentionVisualizer.visualize_transformer_attention(**kwargs)

visualize_transformer_attention() takes three keyword parameters:
1. encoder_self attention
2. decoder_self attention
3. decoder_encoder_attention

Seperately these three parameters are lists of dictionaries, with lengths equal to the number of sentence pairs. Note
that at least one type of attention weights should be passed in.

Parameter Detail

encoder_self attention Each dictionary in ‘encoder_self_attention’ should contain these keys and value:

* key ‘source_sentence’: source sentence consist of M tokens

* key ‘num_layer’: the number of layers in the Transformer model

e key ‘num_head’: the number of heads in the Transformer model

e key ‘layer_x-head_y’: the attention matrix of shape(M,M), from head y in
layer x

decoder_self_attention Each dictionary in ‘decoder_self_attention’ should contain these keys and value:

» key ‘target_sentence’: target sentence consist of N tokens

* key ‘num_layer’: the number of layers in the Transformer model

e key ‘num_head’: the number of heads in the Transformer model

* key ‘layer_x-head_y’: the attention matrix of shape(N,N), from head y in layer
X

decoder_encoder_attention | Each dictionary in ‘decoder_encoder_attention’ should contain these keys and value:

* key ‘source_sentence’: source sentence consist of M tokens

 key ‘target_sentence’: target sentence consist of N tokens

* key ‘num_layer’: the number of layers in the Transformer model

* key ‘num_head’: the number of heads in the Transformer model

* key ‘layer_x-head_y’: the attention matrix of shape(M,N), from head y in layer
X

7.2. nmtvis.AttentionVisualizer.visualize_attention(data:List[dict]) 17

nmtvis Documentation, Release latest

18 Chapter 7. Attention Visualization

CHAPTER 8

Embedding Visualization

Module nmtvis.EmbeddingVisualizer is designed for visualizing word embeddings(or other high-dimensional vec-
tors like encoded sentence). After preparing the words and corresponding embedding vectors, the user can simply
pass them into the method visualize_embedding_pca() or visualize_embedding_tsne() and get the visualization result
rendered in web. The basic workflow of the methods is to first conduct dimensionality reduction(PCA or TSNE),
which transforms the originial vector to a 2-D or 3-D vector, and then start a local server for web visualization.

Fig. 1: Word Embedding Visualization

See this demo with example data: https://player-eric.github.io/embedding_demo/

8.1 nmtvis.EmbeddingVisualizer.visualize_embedding_pca(**kwargs)

Parameter Detail

embeddings A python list of embedding vectors for words

vocab A python list of words, its order corresponds to the order of embedding vectors
n_dim The expected number of dimensions to visualize

n_neighbor Number of nearest neighbors to record(will be shown in the visualizaion)

copy Configuration for the PCA process as detailed in sklearn’s documentary
whiten https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
svd_solver For a quick start, the default values would suffice

totol

iterated_power

random_ state

19

https://player-eric.github.io/embedding_demo/
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

nmtvis Documentation, Release latest

8.2 nmtvis.EmbeddingVisualizer.visualize_embedding_tsne(**kwargs)

Parameter Detail

embeddings A python list of embedding vectors for words

vocab A python list of words, its order corresponds to the order of embedding vectors
n_dim The expected number of dimensions to visualize

n_neighbor number of nearest neighbors to record(will be shown in the visualizaion)
perplexity configuration for the TSNE process as detailed in sklearn’s documentary
early_exaggeration | https://scikit-learn.org/stable/modules/generated/sklearn.manifold. TSNE.html
learning_rate For a quick start, the default values would suffice

n_iter

min_grad_norm

metric

init

verbose

random_ state

method

angle

n_jobs

20 Chapter 8. Embedding Visualization

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

CHAPTER 9

Beam Search Decoding Visualization

Module nmtvis.BeamSearchVisualizer targets at visualizing the beam search decoding process by drawing the search
tree.

By saving the beam search decoder’s state at every step and then calling the visualize_beam_search_decode method,
the user can get an interactive search tree graph rendered in a Web.

Fig. 1: Beam Search Decoding Visualization

A demo with example data: https://player-eric.github.io/beam_demo/

9.1 nmtvis.BeamSearchVisualizer.visualize_visualize_beam_search_decode(**/

Parameter Detail

source_sentences A python list consisting translated sentences

target_sentences A python list consisting translation results

predicts An numpy array of shape [num_sentences,num_steps,beam_width]
Words predicted by the beam search decoder at every step

parents An numpy array of shape [num_sentences,num_steps,beam_width]
Indexes of beams which the predictions at next step come from

log_probs An numpy array of shape [num_sentences,num_steps,beam_width]
Log probabilities of giving every predicted words

beam_width A python int
The size of the beams

As the above parameters may be a little bit complicated, here is a simple example:
Source sentence:

Target sentence: I love you

21

https://player-eric.github.io/beam_demo/

nmtvis Documentation, Release latest

-0.2 -0.1 -0.1
——————— love—————you--——————-</s>
-0.1 |
__________ I-|
| | -0.7 -0.1 -0.1
... _ like—————- you————————-— </s>
| 1.3
<D= | ==———————— my
|
|
| -0.3 -0.8 -0.1 -0.1
—————————— me-——--———-like-————-you—————————-</s>

To visualize the above decoding process, parameters passed in should be:
source_sentence:[“”]
target_sentence:[“I love you™]
predicts:

[
[[“T’,’my”, " me”],
[“love”,’like”,’like™],
[“you”,’you”,’you’],

39 99

[“</s>7)</s>") </s>"]

|

parents:
[
[[0,0,01,
[0,0,2],
[0,1,2],
[0,1,2]
1
1
log_probs:
[
[[-0.1,-1.3,-0.3],
[-0.2,-0.7,-0.8],

22 Chapter 9. Beam Search Decoding Visualization

nmtvis Documentation, Release latest

[-0.1,-0.1,-0.1],
[-0.1,-0.1,-0.1]

]
beam_width:3

9.1. nmtvis.BeamSearchVisualizer.visualize_visualize_beam_search_decode(**kwargs) 23

	Installation
	Requirements
	Features
	Links
	License
	Support
	Attention Visualization
	Visualization Views
	nmtvis.AttentionVisualizer.visualize_attention(data:List[dict])
	nmtvis.AttentionVisualizer.visualize_transformer_attention(**kwargs)

	Embedding Visualization
	nmtvis.EmbeddingVisualizer.visualize_embedding_pca(**kwargs)
	nmtvis.EmbeddingVisualizer.visualize_embedding_tsne(**kwargs)

	Beam Search Decoding Visualization
	nmtvis.BeamSearchVisualizer.visualize_visualize_beam_search_decode(**kwargs)

